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OUTLINE

• Why we use capacity expansion models (CEMs)
• A little bit about one CEM
• How CEMs (and real systems) ensure “enough” 

capacity is built
• What is capacity value (CV)?
• How to estimate CV for variable renewable energy 

(VRE) resources
• Other considerations for calculating CV
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DECISIONS, DECISIONS, DECISIONS

Source: Alexandra von Meier

PlanningOperations

“Dynamics”
(Automation)

Relevant decision time scales in running a power grid span 
15 orders of magnitude….dynamics all the way to investment

Capacity Expansion Models (CEMs)
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WHAT QUESTIONS CAN CEMS
ANSWER? 

• What resources (and where) should I build in order to 
meet projected load growth with minimal cost in 2030? 

• What is the impact of implementing a new policy on total 
system cost and generator deployment?

• What range of generator deployment could be 
experienced in the near-, mid-, and long-term under 
various projected costs?

• What is the impact of reduced water availability on hydro
deployment and the operations of the rest of the system?
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CEMS CAPTURE COSTS INCURRED
AND VALUE ADDED

Cost

Value
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CEMS CAPTURE COSTS INCURRED
AND VALUE ADDED

Cost

Value

Energy
Reliability

Policy

Capital
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EXAMPLE CEM: NREL’S REGIONAL ENERGY
DEPLOYMENT SYSTEM (REEDS) MODEL

High spatial resolution to 
represent both transmission and 
spatial mismatch of resource and 
load

High temporal resolution to 
represent seasonal and diurnal 
variations in load and resources

Statistical consideration of 
integration issues due to 
variability and uncertainty of RE 
supply

ReEDS is a spatially and temporally resolved CEM that identifies least-cost 
deployment and reduced form dispatch scenarios for the U.S. electric sector
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EMPHASIS ON RENEWABLE ENERGY

Highly resolved RE resource 
representations:
• Resource quality
• Accessibility and other development 

costs

Intra-timeslice representation of variable 
resource availability.
• Capacity value: contribution to 

planning reserves
• Induced operating reserves: additional 

reserves necessary due to forecast error
• Curtailments: unusable RE due to 

insufficient load
NREL RE Resource Maps

Can be applied to any location-specific resource
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RELIABILITY

Resource Adequacy – having enough generation 
supply resource to meet load at all times accounting for 
outages

Operational Reliability – withstanding sudden 
disturbances
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RESOURCE ADEQUACY

Approach: Add enough resources (generation, DR, storage, net 
interchanges, contracts) to supply all demand at a future time and 
location, with a certain probability of failing to do so

• Often measured based on installed capacity, peak load, and a 
planning reserve margin (typically 15%)

• No system can be perfectly adequate
• How adequate is adequate enough?
• Quantify the number of times system will be inadequate – often 

measured as hours/year; days/year (1d/10y ≈ 99.97%)
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HOW HAVE WE BEEN MEASURING
RESOURCE ADEQUACY?

In real systems
• No universal resource adequacy target – each planning area sets its own 

target, often imposed somewhat arbitrarily by policy
• Peak load plus some reserve margin
• Loss of load probability (LOLP)-based metric (1d/10yr)

• In North America, NERC annually assesses, but does not enforce, 
seasonal and long-term reserve margins

In planning models (e.g., CEMs like ReEDS)
• Planning reserve margin (PRM) constraint with derating of capacity based 

on performance metrics à capacity value
Σ (Derated Capacity) ≥ PRM * Peak Load

• Ongoing work to improve this aspect of models
• e.g., improve temporal resolution of CV methods; embed reliability model 

within CEM to effectively remove need for PRM constraint
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ARE THERE METRICS FOR SYSTEM
ADEQUACY?

Loss of load probability (LOLP)
• Probability of insufficient generation to cover load

Loss of load expectation (LOLE) = probability x time

Expected unserved energy
• Measures the amount of potential shortfall, not just the likelihood

All of these measures capture varying levels of risk –
something that is missing from fixed planning reserve margin 
approaches unless they have been ‘trued up’ with reliability 
results
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PREFERRED RESOURCE ADEQUACY
METRIC (AND CV METHOD) IS BASED
ON LOLP

= ELCC
(Effective Load 
Carrying Capability)

Milligan et al. 2016
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RECOMMENDED APPROACHES FOR
RESOURCE ADEQUACY

• Adopt a reliability target such as 1d/10y
• Derive the percentage reserve margin that 

corresponds to the reliability target
• Use ELCC to determine any generator’s contribution
• Wind and solar from net load time series à CV
• Conventionals with forced outage rates

• Use multiple years of data, and revisit as more data 
becomes available

• Interconnection or regional analysis
• Ideally account for storage/DR
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WHAT IS CAPACITY VALUE (CV)?

• Fraction of the installed capacity that reliably 
contributes to meeting load during times when the 
system has the highest probability of not meeting 
load

• Sometimes called capacity credit (where capacity 
value then refers to the monetary value of that 
capacity)

• For VRE, key inputs are load and VRE profiles
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CV DECLINES WITH VRE PENETRATION
LEVEL

Solar PV sees a similar decline, with marginal capacity values approaching 
0 around 20% energy penetration (e.g., Munoz and Mills 2016)

(Milligan et al. 2016)



India 
(co-lead)

Denmark Finland Mexico
(co-lead)

South Africa Spain United States
(co-lead, under review)Brazil China

VRE DECLINING CV: SIMPLE EXAMPLE

Sunset
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VRE DECLINING CV: SIMPLE EXAMPLE

Sunset
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VRE DECLINING CV: SIMPLE EXAMPLE

Sunset

Shifted 
peak
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HOW TO ESTIMATE CV FOR VARIABLE
RENEWABLE ENERGY (VRE) 
RESOURCES

• Could explicitly back out (or embed) CV with enough data 
(above)

• Otherwise, the preferred approach is to calculate CV as the 
ELCC

Load − VRE
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A LITTLE BIT MORE ABOUT ELCC

What ELCC is Not
• A minimum generation value
• A schedule or forecast for solar or wind
• Unique to wind and solar

ELCC is
• Measure of solar or wind (or other resource’s) 

contribution to overall system adequacy (e.g., PRM)
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HOW DOES ELCC WORK?

• Holds the system at constant annual risk level with/without the 
generator of interest (wind, solar)

• Utilizes reliability/production simulation model
• Hourly loads
• Generator characteristics (capacity, planned and forced outages)
• Network characteristics (line outage rates)
• VRE generation pattern (hourly for >= 1 year) time-synchronized with load
• Calculates hourly LOLP (loss of load probability)

• The hourly LOLP calculation finds high-risk hours: risk can be caused 
by
• Peak loads or net loads
• Unit unavailability (planned maintenance, forced outage)
• Interchange and hydro schedules/availability

• Most hours/days have LOLP=0 so are discarded: only high-risk/peak 
hours remain in the calculation of ELCC

• For conventional units, ELCC is function of forced outage rate
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ELCC REVISITED

= ELCC
(Effective Load 
Carrying Capability)

Milligan et al. 2016
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HOWEVER, CV IS OFTEN
APPROXIMATED

ELCC estimations
• Approximate the relationship between capacity 

additions and LOLP 
• e.g., Z-method (Dragoon and Dvortsov 2006), Garver’s method 

(Garver 1966), and Garver’s method extended to multistate 
generators (D’Annunzio and Santoso 2008)

Capacity factor proxy
• Applied to “high risk” hours (e.g., Milligan and Parsons 1999 for wind, 

Madaeni et al. 2013 for solar)

• Ad-hoc rule of thumbs
• Applied to top load hours in load duration curve (LDC)
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ONE EXAMPLE: STATISTICAL “Z-
METHOD”

CV: additional load that can be served (ELCC) by an additional 
unit of capacity (e.g., VRE) while maintaining the same level of 
reliability (LOLP)

Source: Dragoon and Dvortsov (2006)

Available Generation Capacity Excess
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ANOTHER EXAMPLE: CV ESTIMATED AS
CAPACITY FACTOR DURING TOP HOURS IN
LDC

Hour

LDC

NLDC

D
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)

NLDC(δ)

Capacity value 
of existing VG

Marginal 
capacity value 
of new VG

100 hrs

LDC = load duration

Move from time-slice based CV to annual 8760-hourly method

Consistent methodology with NREL’s RPM model (Hale et al. 2016)
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LDC METHOD BETTER CAPTURES
DECLINING CV THAN STATISTICAL
METHOD IN REEDS

Incremental PV CV in the Austin, Texas region (p64) 
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IN PRACTICE, CF APPROXIMATIONS
ARE OFTEN USED FOR CALCULATING
CV

Operator Geographic 
Resolution

Sampling Period Intra-annual
distinction

Historical 
Window

CAISO Site-specific Summer afternoons,
Winter evenings

Monthly 3 years

ERCOT System-wide (solar),
Coastal vs non-coastal 
(wind)

Top 20 load hours Summer, 
Winter

3 years (solar)
10 years (wind)

MISO Nodal disaggregated 
from system-wide

Top 8 load hours Annual 11 years (wind)

NE-ISO Site-specific Summer afternoons, 
winter evenings, 
shortage events

Summer, 
Winter

5 years

PJM Site-specific Summer afternoons Summer only 3 years

Note: CV is also used in operating regions with capacity markets to 
determine the eligible portion of capacity
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RULE OF THUMB CV METHODS ARE
INCONSISTENTLY INACCURATE

Western Electricity Coordinating Council (WECC) rules of thumb versus full reliability model
Milligan et al. 2016
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OTHER CONSIDERATIONS…SINGLE-YEAR
CAPACITY VALUE IS NOT ADEQUATE FOR
ANY TYPE OF PLANT
• Conventional plant uses long-term forced outage rate for 

that type and size of plant
• Long-term adequacy question

• Resource supply must be robust against any single unit or 
probable multiple unit failures at critical times

• Example: Thermal plant, 100 MW, 0.10 FOR. Expected 
capacity value is approximately 90% (90 MW).
• In outage year plant has 0 capacity value
• In “normal” years plant has 100 MW capacity value
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ACHIEVE MORE ROBUST CV RESULTS
WITH MULTIPLE-YEAR DATA SETS

Studies suggest 8-9 years to converge on long-term value, 
which is key for planning decisions

Milligan et al. 2016
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TRANSMISSION ASSUMPTIONS IMPACT
RESOURCE ADEQUACY LEVEL

Greater reduction in required ELCC for reliability target is 
achieved with increasing degrees of interconnection

Milligan et al. 2016
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CALIFORNIA: IMPACT OF HYDRO, 
TRANSACTIONS

Multi-year Capacity Value (Excludes Hydro, 
Interchange)
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CAPTURING SYSTEM-WIDE INTERACTIONS IS
INCREASINGLY IMPORTANT WITH MORE VRE

• Supply AND demand side
• Capacity AND energy constraints
• Network impacts
• Correlated or common mode failures
• Changes in net load (load minus VRE) profile:

Impact of PV on net load profile and 4-hour storage effective market potential in California in 2015
(Denholm and Margolis)
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STORAGE IS PARTICULARLY COMPLEX

Capacity and energy constraints
• Ideally requires chronological tracking

Depends on interaction with many other                                 
system components
• Amount of existing PV
• Amount of existing storage
• Duration of storage

New storage CV method in ReEDS: functional form to 
capture peak net load reduction 
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QUESTIONS?

Thank you!

bethany.frew@nrel.gov
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